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lithic ceramic materials is one concept for confinement of candidate armor
h constraint during ballistic impact and retention of damage fragments for post-
ve or non-destructive methods. Non-destructive examination is essential for the
 of consolidated samples, which subsequently will be tested ballistically and
ge in the post-impacted condition. Such non-destructive characterization of
c tile material encapsulated within discontinuously reinforced aluminum metal
cted using x-ray computed tomography, CT. Each sample consisted of one 10
mic tile encapsulated with 356/SiC/60p-F DRA forming a test sample of 15.2
 dimensions. Both digital x-ray radiography and computed tomography were
custom built ACTIS 600/420 x-ray computed tomography scanner from Bio-
ze and document the "as fabricated" samples prior to planned ballistic testing.
bricated by the pressure infiltration casting process indicated pre-existing voids
nd substantial multiple cracks in both the MMC and the SiC materials. Such
, had they gone undetected, would have been difficult to separate from later
age. Also, significant displacement of the SiC tile was detected indicating an

le during the encapsulation casting step. A subsequent sample fabricated by the
ess appears more promising as conventional x-rays reveal the absence of the
 previous samples. This report discusses the application of x-ray computed
acterization of encapsulated ceramic target materials.
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1.  INTRODUCTION

impact characterization is necessary for understanding the damage cracking
ulated samples.  Without pre-impact characterization no sample initial state
 pre-existing in the initial state, consisting of voids, inclusions, cracks, or other
listic test results and their interpretation and thus, should be accounted for in
lysis.  Different non-destructive testing techniques, including x-ray radiography
 been used in the past to assess internal structure in a variety of materials.
itations that make obtaining detailed volumetric (i.e., three-dimensional) data
. Characterization of opaque ceramic materials is also required to provide both

age assessment of candidate armor ceramics in either confined or applique
rization techniques have the limitation of statistical sampling of selected items,
for further ballistic testing or in service use. Non-destructive techniques avoid
bility to detect and record the presence, location, orientation, shape and size of
terest in such applications, particularly where more than one type of material is

pression, stiff, hard, and brittle. These attributes can be exploited to resist, if
onstrained ceramic materials are less than fully effective in resisting ballistic
have been demonstrated to be more mass efficient in resisting and, in some
jectiles (Hauver) [1]. Encapsulation of ceramic tiles in monolithic Ti-6Al-4V
ing and subsequent hot isostatic pressing, (HIP), has been investigated by
capsulation of armor ceramics by cast aluminum metal matrix composites, AL
dvantage of the intrinsic higher specific modulus of the MMC material and the
ation method. Earlier efforts utilizing non-destructive ultrasonic techniques for
d aluminum DRA materials did not produce suitable results (Sincebaugh) [3].

or ceramics is necessary to examine the microstructural and fractographic
aterial. Target systems using unconfined ceramic elements are normally
mpacted ceramic fragments. Encapsulated ceramics have more inherent post-



impact recoverability as long as the encapsulant remains substantially intact. Also, an encapsulant with substantial
stiffness may play a significant role by preventing or minimizing bending in the ceramic rear face during ballistic
impact. Reduction in rear face bending of the brittle ceramic avoids high tensile bending stresses, which can induce
premature back surface crack initiation and decrease ballistic performance.

1.1 Non-destructive Testing & X-ray Computed Tomography

X-ray and various ultrasonic inspection techniques have been used to detect internal defects that do not
intersect the external surfaces.  However, conventional x-ray radiography suffers from the absence of three-
dimensional (3D) information, since a film radiograph or fluoroscopic image is a shadowgraph. Ultrasonic
inspection techniques can suffer from signal dispersion in ballistically tested materials with extensive cracking or
fracture damage. This makes it difficult to produce an accurate two-dimensional (2D), much less a 3D, ultrasonic
image of the damage.  X-ray computed tomography is broadly applicable to any material or test object through
which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics,
metallic/nonmetallic composite material, and assemblies.  The principal advantage of CT is that it provides
densitometric (that is, radiological density and geometry) images of thin cross sections through an object.  Because
of the absence of structural superposition, images are much easier to interpret than conventional radiological
images.  The user can quickly learn to read CT data because images correspond more closely to the way the human
mind visualizes 3D structures than projection radiography; that is, film radiography, real-time radiography, and
digital radiography [4,5].

1.2 Three-Dimensional Visualization of Multiple CT Scans

The excellent dimensional accuracy and the digital nature of CT images allow the accurate volume
reconstruction of multiple adjacent slices.  The slices are “stacked” to provide 3D information through out the entire
object or a section of the object.  Two ways of visualizing volumetric data are multiplanar reconstruction (MPR)
and 3D reconstruction.  Multiplanar reconstruction (visualization) displays top, front, side, and oblique slices
through the object.  The orientation of the top slice is parallel to the cross-sectional image plane.  The front slice is
orthogonal to the top slice.  The side slice is orthogonal to both the top and front slices.  The oblique slice can be
placed on any one of the other three slices.  The MPR display is similar to an engineering drawing.  However, each
view (i.e., top, front, side, and oblique) is a slice with finite thickness through the object, not a 2D projection.  The
top, front, and side slices can be moved anywhere in the reconstructed volume.  The oblique slice can be rotated
through 360 degrees.  Dimensional analysis, image processing, and automated flaw detection and measurement can
be performed with MPR images.

Volumetric data is displayed as a 3D solid object in 3D reconstruction (visualization), and the orientation
of the solid in space can be changed to facilitate different views.  The solid can also be “virtually” sectioned by only
displaying part of the reconstructed volume, which creates a “virtual” cutting plane on the solid showing the x-ray
density values on that plane.  This plane may be orthogonal to the cross-sectional image plane.  In effect, virtual
sectioning shows the cutting plane as it would look if the object was actually destructively sectioned along that
plane. Green and Wells [6] have previously demonstrated the use of CT scans with impact ceramics and composites
target materials.

2.  Technical Approach

2.1 Sample Design
The samples used in this study were sized the same as those used by Horwath & Bruchey [2} for their

EBW/HIP Titanium Ti-6Al-4Valloy encapsulated samples. A schematic of the sample dimensions is shown in
Figure 1. The differences with the present samples are that the encapsulation material was a highly filled,
discontinuously reinforced aluminum alloy metal matrix composite. A comparison of selected properties between
the Ti-6Al-4V and the DRA MMC material are shown in Table 1.
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Figure 1.   Encapsulated Ceramic / DRA Sample Configuration used for both the Pressure Infiltrated and
the Pressureless Infiltration Casting processes.
Table 1. Comparison of Selected Properties of Materials Utilized in Encapsulated Samples
SiC Ceramic Tile 356/SiC/60p-F MMC Ti-6AL-4V

nsity 3.1 g/cc 2.9 g/cc 4.4 g/cc
astic Modulus 400 GPa 195 GPa 110 GPa
efficient of Thermal
pansion

4.4 /ºC 6.5 - 7.0 /ºC 9.3 /ºC

eld Strength (550) MPa 350 MPa 825 MPa
t. Areal Density 24.6  psf 36.6 psf

 Sample Preparation
The SiC tile material was provided by Horwath and was identified as being from the same lot of material

m Cercom as used by Bruchey & Horwath [2] in their Titanium encapsulated targets. No further information is
ailable at this time on the SiC tiles.

Pressure Infiltration Casting Process – The SiC tile was pre-positioned vertically and off center in the sample
thickness direction in a graphite mold. Fine SiC particulate reinforcement, nominally 12 microns in size, was
packed around the SiC tile. A vacuum was drawn and then the preheated mold was pressure infiltrated with
molten aluminum 356 casting alloy.  Further details of the fabrication casting process are commercially
proprietary with the supplier. These samples were labeled MMC-01, MMC-02 and MMC-03, with front and
back faces identified from the casting supplier. Later arbitrary markings of top, bottom, right and left side were
made at ARL.

Pressureless Metal Infiltration Process – A fourth encapsulated sample was fabricated by a different supplier
using the Pressureless Metal Infiltration Casting Process. In this process, a bed of SiC particulate is poured into
a perforated mold, the SiC tile is placed on this loose particulate surface and additional SiC particulate is
poured on top covering the tile. This assemblage is then place on top of an aluminum alloy plate and the entire
system is heated in a furnace where the molten aluminum flows through the mold perforations and diffuses
throughout the SiC perform via capillary action. After the infiltration was completed, the sample, identified as
MMC-04, was very slowly cooled to room temperature. The front face of this sample was similarly identified
by the supplier.



2. 3  X-ray Tomographic Inspection

2.3.1 Equipment – The samples were inspected using a customized ACTIS 600/420 computed tomography
system designed and constructed by Bio-Imaging Research, Inc., and installed at the U.S. Army Research
Laboratory at Aberdeen Proving Ground (APG), Maryland.  The system has a 420 keV x-ray tube with two focal
spot sizes and a 160 keV microfocus x-ray tube with four focal spot sizes, the smallest being 10 microns.  It has a
linear detector array (LDA) and an image intensifier with a zoom lens and a charged-coupled device (CCD) camera.
Computed tomography scanning can be done using the LDA or the image intensifier (II).  The system can scan in
rotate-only (RO) and offset-RO mode using the LDA or the II as shown in Figure 2, and in translate-rotate (TR)
mode using the LDA. It can also perform digital radiography (DR) scans using the LDA or II as shown in Figure 3.

2.3.2 NDT X-ray Procedure – Each sample was scann
from a height of approximately 22 mm to a height of app
parallel to the two inch (50.8 mm) through thickness dire
through the fan beam between finite rotations of the turnta
of the source-to-image distance (SID) does not change. 
finished. The TR scan data is reorganized into a set of 
SOD and SID were 662.75 mm and 930.00 mm, respect
resulting in contiguous scans.  Each slice was reconstruct
32 minutes per slice with 100 slices required to scan the 1
x-ray tube with the linear detector array (LDA). The tub
samples MMC-01 and MMC-02 and 370 keV and 2.25 mA
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3.2 Digital Radiography– A digital radiograph, DR, in the through thickness direction was taken of each sample.
These are shown in Figure 5 (a), (b), and (c) for samples MMC-01, MMC-02, and MMC-03, respectively.  The
purely vertical streaking in each DR is an image artifact and does not correspond to material or structural
differences in the samples. A substantial amount of cracking is evident in each of the pressure infiltrated samples,
Figures 5(a), (b) and (c).  Also, the internal SiC tile, which appears lighter than the surrounding matrix, is not
centered top-to-bottom, nor centered left-to-right, tilted to some degree, or some combination of these translational
conditions.  Note that it is not evident from the DR whether such cracking extends from the MMC into the SiC tile
material or remains in the projected MMC plane in front of and/or behind the tile.  Similarly, no tile displacement
toward or away from the front face of the sample is discernable in the DR.  Neither cracking nor SiC tile
displacement was observed in the conventional radiograph of the pressureless infiltration sample MMC-04.

3.3 X-ray Computed Tomography, CT
Figure 6 is a representative series of fou
of the image.  Cracking in both the DRA
views.  This cracking appears predomin
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Figure 5(c).  Digital Radiograph
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Figure 4 (d). Front surface of sample MMC-04
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a) Above top of SiC tile Sample MMC-01 (b) Near lower quarter of tile (48 mm)
(c) Near bottom of tile 
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(b) Upper tile quarter section (105 mm)
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gain, cracking in both the DRA material and the SiC
inating on the front face are seen to bridge the DRA
the SiC tile as shown in Figures 8 (b) and (c). The tile
ont face of the sample.  Lastly, the tile is closer from
om of the sample, indicating a vertical tilting as well.

ss sectional positions of sample MMC-02.
and both transverse and lateral cracks in



(a) Near top of tile in Sample MMC-03       

(c) Lower quarter section of tile (44mm)      
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